Katherine Taylor for Quanta Magazine
Jeremy
England, a 31-year-old physicist at MIT, thinks he has found the
underlying physics driving the origin and evolution of life.
Why does life exist?Jeremy
England, a 31-year-old physicist at MIT, thinks he has found the
underlying physics driving the origin and evolution of life.
Popular hypotheses credit a primordial soup, a bolt of lightning and a colossal stroke of luck. But if a provocative new theory is correct, luck may have little to do with it.
Instead, according to the physicist proposing the idea, the origin and
subsequent evolution of life follow from the fundamental laws of nature
and “should be as unsurprising as rocks rolling downhill.”
From the standpoint of physics, there is one essential difference
between living things and inanimate clumps of carbon atoms: The former
tend to be much better at capturing energy from their environment and
dissipating that energy as heat. Jeremy England ,
a 31-year-old assistant professor at the Massachusetts Institute of
Technology, has derived a mathematical formula that he believes explains
this capacity.
The formula, based on established physics, indicates that when a group
of atoms is driven by an external source of energy (like the sun or
chemical fuel) and surrounded by a heat bath (like the ocean or
atmosphere), it will often gradually restructure itself in order to
dissipate increasingly more energy. This could mean that under certain conditions, matter inexorably acquires the key physical attribute associated with life.
Kristian Peters
Cells from the moss Plagiomnium affine with visible chloroplasts, organelles that conduct photosynthesis by capturing sunlight.
Cells from the moss Plagiomnium affine with visible chloroplasts, organelles that conduct photosynthesis by capturing sunlight.
for long enough, it should not be so surprising that you get a plant,”
England said.
England’s theory is meant to underlie, rather than replace, Darwin’s
theory of evolution by natural selection, which provides a powerful
description of life at the level of genes and populations. “I am certainly not saying that Darwinian ideas are wrong,” he explained.
“On the contrary, I am just saying that from the perspective of the
physics, you might call Darwinian evolution a special case of a more
general phenomenon.”
His idea, detailed in a recent paper and further elaborated in a talk
he is delivering at universities around the world, has sparked
controversy among his colleagues, who see it as either tenuous or a
potential breakthrough, or both.
England has taken “a very brave and very important step,” said
Alexander Grosberg, a professor of physics at New York University who
has followed England’s work since its early stages.
The “big hope” is that he has identified the underlying physical
principle driving the origin and evolution of life, Grosberg said.
“Jeremy is just about the brightest young scientist I ever came
across,” said Attila Szabo, a biophysicist in the Laboratory of Chemical
Physics at the National Institutes of Health who corresponded with
England about his theory after meeting him at a conference. “I was struck by the originality of the ideas.”
Others, such as Eugene Shakhnovich, a professor of chemistry,
chemical biology and biophysics at Harvard University, are not convinced.
“Jeremy’s ideas are interesting and potentially promising, but at this
point are extremely speculative, especially as applied to life
phenomena,” Shakhnovich said.
England’s theoretical results are generally considered valid.
It is his interpretation — that his formula represents the driving
force behind a class of phenomena in nature that includes life — that
remains unproven. But already, there are ideas about how to test that interpretation in the lab.
“He’s trying something radically different,” said Mara Prentiss, a
professor of physics at Harvard who is contemplating such an experiment
after learning about England’s work. “As an organizing lens, I think he has a fabulous idea. Right or wrong, it’s going to be very much worth the investigation.”
Courtesy of Jeremy England
A
computer simulation by Jeremy England and colleagues shows a system of
particles confined inside a viscous fluid in which the turquoise
particles are driven by an oscillating force. Over time (from top to bottom), the force triggers the formation of more bonds among the particles.
A
computer simulation by Jeremy England and colleagues shows a system of
particles confined inside a viscous fluid in which the turquoise
particles are driven by an oscillating force. Over time (from top to bottom), the force triggers the formation of more bonds among the particles.
also known as the law of increasing entropy or the “arrow of time.”
Hot things cool down, gas diffuses through air, eggs scramble but never
spontaneously unscramble; in short, energy tends to disperse or spread
out as time progresses.
Entropy is a measure of this tendency, quantifying how dispersed the
energy is among the particles in a system, and how diffuse those
particles are throughout space. It increases as a simple matter of probability: There are more ways for energy to be spread out than for it to be concentrated.
Thus, as particles in a system move around and interact, they will,
through sheer chance, tend to adopt configurations in which the energy
is spread out.
Eventually, the system arrives at a state of maximum entropy called
“thermodynamic equilibrium,” in which energy is uniformly distributed. A cup of coffee and the room it sits in become the same temperature, for example. As long as the cup and the room are left alone, this process is irreversible.
The coffee never spontaneously heats up again because the odds are
overwhelmingly stacked against so much of the room’s energy randomly
concentrating in its atoms.
Although entropy must increase over time in an isolated or “closed”
system, an “open” system can keep its entropy low — that is, divide
energy unevenly among its atoms — by greatly increasing the entropy of
its surroundings. In his influential 1944 monograph “What Is Life?” the eminent quantum physicist Erwin Schrödinger argued that this is what living things must do.
A plant, for example, absorbs extremely energetic sunlight, uses it to
build sugars, and ejects infrared light, a much less concentrated form
of energy.
The overall entropy of the universe increases during photosynthesis as
the sunlight dissipates, even as the plant prevents itself from decaying
by maintaining an orderly internal structure.
Life does not violate the second law of thermodynamics, but until
recently, physicists were unable to use thermodynamics to explain why it
should arise in the first place. In Schrödinger’s day, they could solve the equations of thermodynamics only for closed systems in equilibrium.
In the 1960s, the Belgian physicist Ilya Prigogine made progress on
predicting the behavior of open systems weakly driven by external energy
sources (for which he won the 1977 Nobel Prize in chemistry).
But the behavior of systems that are far from equilibrium, which are
connected to the outside environment and strongly driven by external
sources of energy, could not be predicted.
This situation changed in the late 1990s, due primarily to the work
of Chris Jarzynski, now at the University of Maryland, and Gavin Crooks,
now at Lawrence Berkeley National Laboratory. Jarzynski and Crooks showed
that the entropy produced by a thermodynamic process, such as the
cooling of a cup of coffee, corresponds to a simple ratio: the
probability that the atoms will undergo that process divided by their
probability of undergoing the reverse process (that is, spontaneously
interacting in such a way that the coffee warms up). As entropy production increases, so does this ratio: A system’s behavior becomes more and more “irreversible.”
The simple yet rigorous formula could in principle be applied to any
thermodynamic process, no matter how fast or far from equilibrium. “Our understanding of far-from-equilibrium statistical mechanics greatly improved,” Grosberg said.
England, who is trained in both biochemistry and physics, started his
own lab at MIT two years ago and decided to apply the new knowledge of
statistical physics to biology.
Using Jarzynski and Crooks’ formulation, he derived a generalization
of the second law of thermodynamics that holds for systems of particles
with certain characteristics: The systems are strongly driven by an
external energy source such as an electromagnetic wave, and they can
dump heat into a surrounding bath.
This class of systems includes all living things. England then
determined how such systems tend to evolve over time as they increase
their irreversibility.
“We can show very simply from the formula that the more likely
evolutionary outcomes are going to be the ones that absorbed and
dissipated more energy from the environment’s external drives on the way
to getting there,” he said.
The finding makes intuitive sense: Particles tend to dissipate more
energy when they resonate with a driving force, or move in the direction
it is pushing them, and they are more likely to move in that direction
than any other at any given moment.
“This means clumps of atoms surrounded by a bath at some temperature,
like the atmosphere or the ocean, should tend over time to arrange
themselves to resonate better and better with the sources of mechanical,
electromagnetic or chemical work in their environments,” England
explained.
Courtesy of Michael Brenner/Proceedings of the National Academy of Sciences
Self-Replicating Sphere Clusters:
According to new research at Harvard, coating the surfaces of
microspheres can cause them to spontaneously assemble into a chosen
structure, such as a polytetrahedron (red), which then triggers nearby
spheres into forming an identical structure.
Self-Replicating Sphere Clusters:
According to new research at Harvard, coating the surfaces of
microspheres can cause them to spontaneously assemble into a chosen
structure, such as a polytetrahedron (red), which then triggers nearby
spheres into forming an identical structure.
that drives the evolution of life on Earth, is one such mechanism by
which a system might dissipate an increasing amount of energy over time. As England put it, “A great way of dissipating more is to make more copies of yourself.” In a September paper
in the Journal of Chemical Physics, he reported the theoretical minimum
amount of dissipation that can occur during the self-replication of RNA
molecules and bacterial cells, and showed that it is very close to the
actual amounts these systems dissipate when replicating.
He also showed that RNA, the nucleic acid that many scientists believe
served as the precursor to DNA-based life, is a particularly cheap
building material. Once RNA arose, he argues, its “Darwinian takeover” was perhaps not surprising.
The chemistry of the primordial soup, random mutations, geography,
catastrophic events and countless other factors have contributed to the
fine details of Earth’s diverse flora and fauna.
But according to England’s theory, the underlying principle driving the
whole process is dissipation-driven adaptation of matter.
This principle would apply to inanimate matter as well.
“It is very tempting to speculate about what phenomena in nature we can
now fit under this big tent of dissipation-driven adaptive
organization,” England said. “Many examples could just be right under our nose, but because we haven’t been looking for them we haven’t noticed them.”
Scientists have already observed self-replication in nonliving
systems. According to new research led by Philip Marcus of the
University of California, Berkeley, and reported in Physical Review Letters
in August, vortices in turbulent fluids spontaneously replicate
themselves by drawing energy from shear in the surrounding fluid. And in a paper appearing online this week
in Proceedings of the National Academy of Sciences, Michael Brenner, a
professor of applied mathematics and physics at Harvard, and his
collaborators present theoretical models and simulations of
microstructures that self-replicate. These clusters of specially coated microspheres dissipate energy by roping nearby spheres into forming identical clusters. “This connects very much to what Jeremy is saying,” Brenner said.
Besides self-replication, greater structural organization is another
means by which strongly driven systems ramp up their ability to
dissipate energy.
A plant, for example, is much better at capturing and routing solar
energy through itself than an unstructured heap of carbon atoms. Thus,
England argues that under certain conditions, matter will spontaneously
self-organize. This tendency could account for the internal order of living things and of many inanimate structures as well.
“Snowflakes, sand dunes and turbulent vortices all have in common that
they are strikingly patterned structures that emerge in many-particle
systems driven by some dissipative process,” he said. Condensation, wind and viscous drag are the relevant processes in these particular cases.
“He is making me think that the distinction between living and nonliving matter is not sharp,” said Carl Franck , a biological physicist at Cornell University, in an email.
“I’m particularly impressed by this notion when one considers systems
as small as chemical circuits involving a few biomolecules.”
Wilson Bentley
If
a new theory is correct, the same physics it identifies as responsible
for the origin of living things could explain the formation of many
other patterned structures in nature.
Snowflakes, sand dunes and self-replicating vortices in the
protoplanetary disk may all be examples of dissipation-driven adaptation.
If
a new theory is correct, the same physics it identifies as responsible
for the origin of living things could explain the formation of many
other patterned structures in nature.
Snowflakes, sand dunes and self-replicating vortices in the
protoplanetary disk may all be examples of dissipation-driven adaptation.
He is currently running computer simulations to test his theory that
systems of particles adapt their structures to become better at
dissipating energy. The next step will be to run experiments on living systems.
Prentiss, who runs an experimental biophysics lab at Harvard, says
England’s theory could be tested by comparing cells with different
mutations and looking for a correlation between the amount of energy the
cells dissipate and their replication rates. “One has to be careful because any mutation might do many things,” she said.
“But if one kept doing many of these experiments on different systems
and if [dissipation and replication success] are indeed correlated, that
would suggest this is the correct organizing principle.”
Brenner said he hopes to connect England’s theory to his own
microsphere constructions and determine whether the theory correctly
predicts which self-replication and self-assembly processes can occur —
“a fundamental question in science,” he said.
Having an overarching principle of life and evolution would give
researchers a broader perspective on the emergence of structure and
function in living things, many of the researchers said. “Natural selection doesn’t explain certain characteristics,” said Ard Louis, a biophysicist at Oxford University, in an email. These characteristics include a heritable change to gene expression called methylation, increases in complexity in the absence of natural selection , and certain molecular changes Louis has recently studied.
If England’s approach stands up to more testing, it could further
liberate biologists from seeking a Darwinian explanation for every
adaptation and allow them to think more generally in terms of
dissipation-driven organization.
They might find, for example, that “the reason that an organism shows
characteristic X rather than Y may not be because X is more fit than Y,
but because physical constraints make it easier for X to evolve than for
Y to evolve,” Louis said.
“People often get stuck in thinking about individual problems,” Prentiss said.
Whether or not England’s ideas turn out to be exactly right, she said,
“thinking more broadly is where many scientific breakthroughs are made.”
Emily Singer contributed reporting.
Correction: This article was revised on January 22, 2014, to
reflect that Ilya Prigogine won the Nobel Prize in chemistry, not
physics.
A New Thermodynamics Theory of the Origin of Life | Simons Foundation
No comments:
Post a Comment